Abstract
This study presents a comprehensive investigation of copper-based nanocomposites reinforced with silicon carbide (SiC) nanoparticles and multi-walled carbon nanotubes (MWCNTs). The manufacturing procedure involved powder metallurgy techniques followed by spark plasma sintering (SPS). Microstructural analysis revealed a notable reduction in particle size (from 23.72 μm to 18.31 μm) and crystallite size (from 104.32 nm to 87.36 nm) with the addition of reinforcements. The bulk microstructure exhibited a reduction in grain size by approximately 13.1 %. XRD analysis confirmed the absence of new phases. Evaluation of SPS parameters demonstrated varying density and porosity, with the highest relative density of 99.96 % observed in pure copper composites. Hardness measurements indicated that surface hardness surpassed cross-sectional values, with the lowest recorded value being 64.79 HV for composite Cu-5%SiC-1%MWCNTs (S4). Wear rate analysis revealed an increase, with pure copper composites exhibiting a wear rate of 1.78 × 10^-4 mm3/m, while composite S4 displayed a rate of 3.25 × 10^-4 mm3/m under a load of 5 N. Coefficient of Friction (COF) exhibited significant fluctuations, influenced by the applied load and composite composition. Thermal conductivity decreased with higher SiC and MWCNT content, with sample S1 exhibiting the highest thermal conductivity among reinforced composites. Electrical conductivity trends were influenced by the type and concentration of reinforcing particles, resulting in an increase of approximately six times in composite S4 compared to the pure sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.