Abstract

Functional MRI (fMRI) is currently used to investigate structural and functional connectivity in human brain networks. To this end, previous studies have proposed computational methods that involve assumptions that can induce information loss, such as assumed linear coupling of the fMRI signals or requiring dimension reduction. This study presents a new computational framework for investigating the functional connectivity in the brain and recovering network structure while reducing the information loss inherent in previous methods. For this purpose, pair-wise mutual information (MI) was extracted from all pixel time series within the brain on resting-state fMRI data. Non-metric topographic mapping of proximity (TMP) data was subsequently applied to recover network structure from the pair-wise MI analysis. Our computational framework is demonstrated in the task of identifying regions of the primary motor cortex network on resting state fMRI data. For ground truth comparison, we also localized regions of the primary motor cortex associated with hand movement in a task-based fMRI sequence with a finger-tapping stimulus function. The similarity between our pair-wise MI clustering results and the ground truth is evaluated using the dice coefficient. Our results show that non-metric clustering with the TMP algorithm, as performed on pair-wise MI analysis, was able to detect the primary motor cortex network and achieved a dice coefficient of 0.53 in terms of overlap with the ground truth. Thus, we conclude that our computational framework can extract and visualize valuable information concerning the underlying network structure between different regions of the brain in resting state fMRI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call