Rapid urbanization significantly changes vegetation coverage and heat distribution, which threatens the sustainable development and the quality of life. As the largest developing city in Central China, Wuhan was chosen as the experimental region. This study investigated the urbanization process of Wuhan from 1989 to 2917 based on Landsat data. Combined with MODIS EVI (Enhanced Vegetation Index) and LST (Land Surface Temperature) data, vegetation disturbance and surface urban heat island (SUHI) caused by urbanization were discussed for 2001-2017. Furthermore, correlation between ∆EVI (urban EVI minus rural EVI) and ∆LST (urban LST minus rural LST) was also conducted. The results were as follows: (1) Wuhan experienced a strong urbanization over the past 29years, with an increasing urban expansion rate and the altered dominant urban expansion pattern (edge expansion and infilling). After the enhanced vegetation functions and urban increased structures, the urbanization finally caused the fragmented patches and irregular urban shapes. (2) Urbanization had a positive effect on LST but a negative effect on EVI. From 2001 to 2017, the highest increasing rate of ∆LST for the old urban area (OUA) and urbanized area (UA) was both observed in summer daytime (OUA, 0.106°C/a; UA, 0.207°C/a). The decreasing rate of ∆EVI reached the highest value in summer (OUA, 0.00697/a; UA, 0.00298/a). (3) There was a strong negative correlation (except spring and winter for OUA) between ∆EVI and ∆LST in daytime, which proved that the activity of vegetation in daytime could relieve LST to a certain extent. This study clarifies the dynamic urbanization process of Wuhan and discusses its impacts on vegetation change and SUHI. Efficiently investigating urbanization process and quantifying its impacts on urban environment are critical for regional ecological conservation.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call