Abstract
The possible adverse effects of engineered iron oxide nanoparticles, especially magnetite (Fe3O4 NP), on human health and the environment, have raised concerns about their transport and behavior in soil and water systems. Accumulating these NPs in the environment can substantially affect soil and water quality and the well-being of aquatic and terrestrial organisms. Therefore, it is essential to examine the factors that affect Fe3O4 NP transportation and behavior in soil and water systems to determine their possible environmental fate. In this work, experiments were conducted in aqueous and porous media using an environmentally relevant range of pH (5, 7, 9), ionic strength (IS) (10, 50, 100 mM), and humic acid (HA) (0.1, 1, 10 mg L-1) concentrations. Fe3O4 NPs exhibited severe colloidal instability at pH 7 (⁓ = pHPZC) and showed an improvement in apparent colloidal stability at pH 5 and 9 in aquatic and terrestrial environments. HA in the background solutions promoted the overall transport of Fe3O4 NPs by enhancing the colloidal stability. The increased ionic strength in aqueous media hindered the transport by electron double-layer compression and electrostatic repulsion; however, in porous media, the transport was hindered by ionic compression. Furthermore, the transport behavior of Fe3O4 NPs was investigated in different natural waters such as rivers, lakes, taps, and groundwater. The interaction energy pattern in aquatic systems was estimated using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. This study showed the effects of various physical-chemical conditions on Fe3O4 NP transport in aqueous and porous (sand) media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.