Abstract

Abstract On 24 August 2016, a tornado outbreak impacted Indiana, Ohio, and Ontario with 26 confirmed tornadoes. Elevated multicellular convection developed into surface-based supercells that produced several tornadoes, particularly near a differential heating boundary. This convective mode transition is of particular interest owing to its relatively rare occurrence. A WRF Model simulation accurately captures the environment and storm evolution during this outbreak. Trajectory analyses indicate that the multicellular updrafts were initially elevated. Since nearly all of the vertical wind shear was confined to the lowest 1 km, significant rotation did not develop via tilting of horizontal vorticity until the storms began ingesting near-surface air. Near-surface vertical wind shear decreased outside of cloud cover owing to vertical mixing, while it was preserved under the anvil, allowing for large values of 0–1-km storm-relative helicity to persist north of a differential heating boundary. Analysis of the perturbation pressure field from the WRF Model output indicates that the development of relatively large nonlinear vertical perturbation pressure gradients coincided with when near-surface air began to enter the updrafts, resulting in upward accelerations in the lowest 2 km, below the level of maximum rotation. In strengthening updrafts, upward-directed buoyancy perturbation pressure accelerations may have offset the downward-directed nonlinear perturbation pressure accelerations above the level of maximum rotation, allowing the updrafts to intensify further.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.