Abstract
In this study the mechanical performance of 3D printed intraply hybrid semi-woven composites was investigated. The hybrid composites were fabricated from two types of tow-preg filaments that consist of either carbon or glass fibres impregnated with polyamide, referred to as low elongation (LE) and high elongation (HE) materials respectively. The effect of two printing parameters, weave type and the LE material ratio, were investigated using fifteen unique laminates. The ultimate strain of the hybrid laminates was dependent on the LE material ratio with a transition point at ∼50%. Analytical and FE models were used to predict laminate strength and modulus. In general, the FE model underpredicted the experimental data and the analytical models showed good correlation with experimental observations. The validated analytical model can be used to design hybrid semi-woven laminates to produce a targeted modulus and strength through appropriate selection of weave type and LE material ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Composites Part A: Applied Science and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.