Abstract

This study presents the development of green and sustainable supercapacitor electrodes using activated carbons derived from industrial waste from red pepper (RPW) via conventional chemical activation using ZnCl2 at various carbonization/activation temperatures. The activated carbon samples were subjected to various analytical techniques, including elemental analysis, N2 adsorption-desorption, Raman, FT-IR, and SEM-EDS. The resulting carbon samples were then used to prepare standard coin-sized supercapacitor cells, which were tested using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) techniques with a 6 M KOH electrolyte. The BET surface area and surface functionality of the samples decreased as the temperature increased. The material produced at the highest temperature (AC800) exhibited the lowest gravimetric capacitance value (131 F/g). However, it demonstrated perfectly reversible electrochemical behavior with the highest capacitance retention of 50 % (between 0.5 A/g and 10 A/g) and cyclic stability (>96 %) over 10,000 cycles among all the other materials. Conversely, the electrode material produced at the lowest temperature (AC600) had the highest gravimetric capacitance value of 175 F/g but the lowest electrochemical stability due to the contribution of pseudo faradaic processes in the storage mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call