Abstract
Cyanobacterial Harmful Algal Blooms (CyanoHABs) are a health-threatening and increasingly prevalent environmental issue at both regional and global levels. An improved understanding of the short-term dynamics of CyanoHABs is required to better capture their spatial pattern and temporal evolution. However, the heterogeneous and dynamic nature of CyanoHABs, and the interacting factors and processes that drive them, make interpreting and predicting the blooms a very challenging task. In this paper, we used an integrative approach that combines high-frequency time-series remote sensing with hydro-ecological modelling, to reproduce and investigate the sub-daily dynamics of CyanoHABs in Taihu Lake. Results show that the distribution of CyanoHABs is highly patchy and dynamic without intensive wind-induced circulation and turbulence, which suggests that the dynamic pattern may be largely caused by the migratory behavior of cyanobacteria. The hydro-ecological model well reproduced the observed pattern and trend, and the average of Root Mean Square Error (RMSE) and coefficient of determination (R2) were 9.82 μg/L and 0.52, respectively. Results from sensitivity analysis suggest that photosynthesis rate and respiration rate are two most influential model parameters. Conclusively, there is a lack of adequate representation of physiological processes in currently used modelling framework, thereby suggesting the need for microscale modelling for future modelling exercises of CyanoHABs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.