Abstract
Poly(ADP-ribose) polymerase (PARP) is the key enzyme in polyADP-ribosylation, one of the main post-translational modifications. This enzyme is abundant in eukaryotic organisms. However, information on the PARP structure and its functions in members of the Fungi kingdom is very limited. In this study, we performed a bioinformatic search for homologs of PARP and its antagonist, PARG, in the genomes of four Fusarium strains using their whole-genome sequences annotated and deposited in databases. The F. graminearum PH-1, F. proliferatum ET-1, and F. oxysporum Fo47 strains were shown to possess a single homolog of both PARP and PARG. In addition, the F. oxysporum f. sp. lycopersici strain 4287 contained four additional proteins comprising PARP catalytic domains whose structure was different from that of the remaining identified homologs. Partial nucleotide sequences encoding the catalytic domains of the PARP and PARG homologs were determined in 11 strains of 9 Fusarium species deposited in all-Russian collections, and the phylogenetic properties of the analyzed genes were evaluated. In the toxigenic F. graminearum strain, we demonstrated up-regulation of the gene encoding the PARP homolog upon culturing under conditions stimulating the production of the DON mycotoxin, as well as up-regulation of the gene encoding PARG at later stages of growth. These findings indirectly indicate involvement of the polyADP-ribosylation system in the regulation of the genes responsible for DON biosynthesis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.