Abstract

EuTiO3 exhibits various interesting physical properties, including magnetocaloric effect, quantum paraelectricity, magnetoelectricity, and multiferroic properties, thus attracting a broad range of attention from the researchers. The delicate balance between ferromagnetic coupling and antiferromagnetic interactions offers the feasibility of modulating the magnetic properties and magnetocaloric effect for this perovskite. Herein, a range of Eu(Ti,B)O3 perovskites were prepared by substituting titanium with different amounts of boron. A comprehensive investigation on their structure, magnetism, magnetocaloric effect, and critical behavior was performed. All the compounds are confirmed to be crystallized in a single cubic perovskite structure with space symmetry of Pm3m, with the introduced boron uniformly distributed in the compounds. The transition temperatures are determined to be 6.0, 6.5, 5.0, and 5.0 K for EuTi0.9375B0.0625O3, EuTi0.875B0.125O3, EuTi0.8125B0.1875O3, and EuTi0.75B0.25O3, respectively. The results of both magnetic measurements and critical behavior analysis suggest that appropriate substitution of boron promotes the magnetic transition from AFM to FM in Eu(Ti,B)O3. In addition, significantly enhanced low-field magnetocaloric effects were observed in these perovskites. Under field changes of 0–1 and 0–2 T, the values of -ΔSMmax are 14.7 and 26.4 J·kg−1·K−1 for EuTi0.8125B0.1875O3, 15.2 and 27.4 J·kg−1·K−1 for EuTi0.75B0.25O3, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.