Abstract

This work investigated the structure and self-assembly behavior of grafted starch (GS) prepared by grafting vinyl acetate (VAc) on the starch molecule. Our preliminary structure characterization, NMR, and quantum mechanical simulation demonstrated the C2 of the glucose unit as the main grafting site. The grafting frequency and chain length (starch, VAc) were calculated based on the result of gel permeation chromatography. Molecular dynamics simulation showed that, when compared with native starch, GS had less hydrogen bonding interaction, lower orderness, and higher extensibility, which were supported by the experimental results. In dissipative particle dynamics simulation, GS was shown to self-assemble into a core-shell structure (latex) and form a bridge structure with cross-linking interaction. The overall results indicate that chain entanglement and hydrogen bonding interaction of starch play a significant role in adhesive curing. This research provides a novel insight into the grafting and molecular interaction mechanism in the GS adhesive system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call