Abstract

The performance and behavior of microbial fuel cells (MFCs) are influenced by among others the external load (Rext). In this study, the anode-surface biofilm formation in MFCs operated under different Rext selection/tracking-strategies was assessed. MFCs were characterized by electrochemical (voltage/current generation, polarization tests, EIS), molecular biological (microbial consortium analysis) and bioinformatics (principal component analysis) tools. The results indicated that the MFC with dynamic Rext adjustment (as a function of the actual MFC internal resistance) achieved notably higher performance but relatively lower operational stability, mainly due to the acidification of the biofilm. The opposite (lower performance, increased stability) could be observed with the static (low or high) Rext application (or OCV) strategies, where adaptive microbial processes were assumed. These possible adaptation phenomena were outlined by a theoretical framework and the significant impact of Rext on the anode colonization process and energy recovery with MFCs was concluded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.