Abstract

The cyclohexadienyl radical was studied in a novel green solvent; tetradecyl (trihexyl) phosphonium chloride ionic liquid (IL 101). Both the solvent effects and how the hyperfine coupling changes with respect to temperature have been examined and compared to literature. This was done through experimental muon techniques at the TRIUMF National Laboratory in Canada as well as through ab initio calculations. The ionic liquid solvent effects were found to be consistent with other solvents, when assuming ionic liquids to be a combination of ion pairs. In ionic liquid the hyperfine coupling constants of the proton and reduced muon decreased linearly with increasing temperature. The analysis showed that the majority of this relationship is due to a vibrational effect, although the solvent density plays a role too. The temperature effect on the entropy of the system was determined to be negligible. The temperature coefficient of the reduced muon hyperfine coupling was larger than that of the proton in IL 101 due to the effects of nearby ionic liquid molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call