Abstract

Farmland mercury (Hg) pollution poses a significant threat to human health, but there is a lack of highly efficient phytoextraction for its remediation at present. This study investigates the impact of poly-γ-glutamic acid (γ-PGA) on the phytoextraction capabilities of Pennisetum giganteum (P. giganteum) in Hg-contaminated soil. Our research indicates that amending γ-PGA to soil markedly enhances the assimilation of soil Hg by P. giganteum and transformation of Hg within itself, with observed increases in Hg concentrations in roots, stems, and leaves by 1.1, 4.3, and 18.9 times, respectively, compared to the control. This enhancement is attributed to that γ-PGA can facilitate the hydrophilic and bioavailable of soil Hg. Besides, γ-PGA can stimulate the abundance of Hg-resistance bacteria Proteobacteria in the rhizosphere of P. giganteum, thus increasing the mobility and uptake of soil Hg by P. giganteum roots. Moreover, the hydrophilic nature of Hg-γ-PGA complexes supports their transport via the apoplastic pathway, across the epidermis, and through the Casparian strip, eventually leading to immobilization in the mesophyll tissues. This study provides novel insights into the mechanisms of Hg phytoextraction, demonstrating that γ-PGA significantly enhances the effectiveness of P. giganteum in Hg uptake and translocation. The findings suggest a promising approach for the remediation of Hg-contaminated soil, offering a sustainable and efficient strategy for environmental management and health risk mitigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.