Abstract

The open circuit voltage (VOC) deficit in Cd(Se,Te)-based photovoltaics remains a critical obstacle for pushing the technology closer to theoretical performance limits. Arsenic doping has become a dominant and promising route to achieve the higher p-type carrier concentrations necessary for higher VOC, but challenges associated with this alternate defect chemistry and higher doping density have hindered progress. Here we show that while arsenic doping enables high carrier concentrations (>1016 cm−3), co-doping with copper can provide a boost to VOC without a significant change to carrier concentration. A large data set is initially used to explore current-voltage and capacitance-voltage trends associated with arsenic doped devices with and without copper. A smaller subset is then used to probe these trends using a wide variety of characterization techniques. Copper is found to facilitate reduced interface recombination and potentially improved bulk absorber characteristics, though the mechanisms for these improvements are not yet clear. Despite the improved performance of co-doped devices, VOC is still far below its potential especially for highly doped devices. Low emitter doping in conjunction with high absorber doping seems to be a plausible cause for this significant deficit, though other device properties may exacerbate this problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.