Abstract

The bed morphology of mountain rivers is characterized primarily by the presence of distinguishable isolated roughness elements, such boulders or clasts. The objective of this experimental study was to provide a unique insight into the role of an array of clasts in regulating sand movement over gravel beds for low relative submergence conditions, H/dc<1, and flow depth, H, to the diameter of the clast, dc, a process that has not been studied thoroughly. To assess the role of clasts in controlling incoming sand movement, detailed flume experiments were conducted by placing 40 equally spaced clasts atop a well-packed glass bead bed for replicating the isolated roughness flow regime. The experiments were performed for moderate (∼2.50τcr* where τcr* is the critical dimensionless bed shear stress) and high (∼5.50τcr*) applied bed shear stress conditions, representative of gravel bed rivers. For comparison purposes, experiments were also repeated for nearly identical flow conditions but without the presence of clasts to discern the potential effects that clasts may have on sediment movement and hydraulics within the clast array region and also in the upstream section of the clast region where few observations exist. The experimental results revealed the formation of two distinguishable bed morphological features, namely a funnel shaped “sand ridge” upstream from the clast array region and small depositional “sand patches” around individual clasts. The sand patches were formed in the stoss region of the clasts, which contradicted previous observations of depositional patterns around clasts under high relative submergence conditions (H/dc>1) where, in this case, depositional patches were observed to have formed in the clast wake region. Furthermore, most of the incoming sand was found to be intercepted by the evolving sand ridge upstream from the clast array region with implications in the amount of sand entering the clast array region. The exiting bed-load rate was found to be reduced by a factor of ∼5.0–20, depending on the prevailing flow conditions when experiments with and without clasts were compared under nearly identical flow conditions. The findings of this research, although limited to the isolated roughness regime, may have significant ramifications in stream restoration projects for the design of engineered riffle sections, which typically consist of an array of clasts installed to improve degraded waterways and aquatic habitat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.