Abstract

Bone defects show a slow rate of osteoconduction and imperfect reconstruction, and the current treatment strategies to treat bone defects suffer from limitations like immunogenicity, lack of cell adhesion, and the absence of osteogenic activity. In this context, bioactive supramolecular peptides and peptide gels offer unique opportunities to develop biomaterials that can play a dominant role in the biomineralization of bone tissues and promote bone formation. In this article, we have demonstrated the potential of six tetrapeptides for specific binding to hydroxyapatite (HAp), a major inorganic component of the bone, and their effect on the growth and osteogenic differentiation of mesenchymal stem cells (MSCs). We adopted a simplistic approach of rationally designing amphiphilic peptides by incorporating amino acids, Ser, pSer, Pro, Hyp, Asp, and Glu, which are present in either collagenous or noncollagenous proteins and render properties like antioxidant, calcification, and mineralization. A total of six tetrapeptides, Trp-Trp-His-Ser (WWHS), Trp-Trp-His-pSer (WWHJ), Trp-Trp-His-Pro (WWHP), Trp-Trp-His-Hyp (WWHO), Trp-Trp-His-Asp (WWHD), and Trp-Trp-His-Glu (WWHE), were synthesized. Four peptides were found to self-assemble into nanofibrillar gels resembling the extracellular matrix (ECM), and the remaining two peptides (WWHJ, WWHP) self-assembled into nanorods. The peptides showed excellent cell adhesion, encapsulation, proliferation, and migration and induced the differentiation of mesenchymal stem cells (MSCs), as evident from the enhanced mineralization, resulting from the upregulation of osteogenic markers, RUNX 2, COL I, OPN, and OCN, alkaline phosphatase (ALP) production, and calcium deposition. The peptides also induced the downregulation of inflammatory markers, TNF-α and iNOS, and the upregulation of the anti-inflammatory marker, IL-10, resulting in M2 macrophage polarization. RANKL and TRAP genes were downregulated in a coculture system of MC3T3-E1 and RAW 264.7 cells, implying that peptides promote osteogenesis and inhibit osteoclastogenesis. The peptide-based biomaterials developed in this work can enhance bone regeneration capacity and show strong potential as scaffolds for bone tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call