Abstract
Training and testing different models in the field of text classification mainly depend on the pre-classified text document datasets. Recently, seven datasets have emerged for Arabic text classification, including Single-Label Arabic News Articles Dataset (SANAD), Khaleej, Arabiya, Akhbarona, KALIMAT, Waten2004, and Khaleej2004. This study investigates which of these datasets can provide significant training and fair evaluation for text classification. In this investigation, well-known and accurate learning models are used, including naive Bayes, random forest, K-nearest neighbor, support vector machines, and logistic regression models. We present relevance and time measures of training the models with these datasets to enable Arabic language researchers to select the appropriate dataset to use based on a solid basis of comparison. The performances of the five learning models across the seven datasets are measured and compared with the performance of the same models trained on a well-known English language dataset. The analysis of the relevance and time scores shows that training the support vector machine model on Khaleej and Arabiya obtained the most significant results in the shortest amount of time, with the accuracy of 82%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.