Abstract

It is known that road pavements are damaged due to time, climatic conditions and construction errors. Considering these damages, the most important road defect that reduces road safety and comfort is potholes. Especially as the width and depth of the pothole increases, driving safety is also endangered. In addition, the locations of these potholes, especially on urban roads, are determined manually in many regions. This process causes delays in the maintenance and repair of the potholes. To this end, the authors plan an in-vehicle integrated system consisting of multiple stages to automatically detect potholes occurring in the road network. The main purpose of the planned system is to identify potholes with high accuracy. However, the effect of vehicle speed on pothole detection in this system is unknown. In order to solve this complex situation, real-time video recordings were made on the same road and pothole at different vehicle speeds. Then, the pothole detection process was realized through these videos with the single-stage detector YOLOv7 vs YOLOv8. When the results obtained were examined, exact relationship could not be determined between vehicle speed and pothole detection. This situation may vary according to various parameters such as camera angle, image quality, sunlight condition. In addition, when both models are compared according to the performance criteria, YOLOv7 has a partial superiority over YOLOv8 in mAP0.5, precision, recall and F1 score values. It is especially significant that these criteria are close to 1. Finally, the perception results obtained from the images obtained from the video showed that there was no overfitting in the models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call