Abstract

Polarization losses associated with the cathode oxygen reduction reaction and degradation of cathode materials remain as hurdles for widespread implementation of solid oxide fuel cells (SOFC). Rates of degradation depend significantly on the operating temperature and gas conditions, such as the presence of unwanted oxygen- containing compounds, namely H2O and CO2. In this study we explore degradation mechanisms for a common composite cathode material, La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) - Ce0.90Gd0.10O1.95 (GDC). Three-electrode cells have been tested under various temperatures, PO2s and contaminant conditions in order to observe changes through electrochemical impedance spectroscopy (EIS). EIS is a powerful tool, which allows us to identify changes in the reaction steps comprising the overall ORR. Our EIS results indicate a strong correlation between blocking effects, caused by CO2 and H2O, and the operating temperature of the cell. Using EIS to de- convolute the overall cathode polarization helps to identify the mechanisms by which degradation occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.