Abstract

Activated carbon (AC) with large surface area and high electrical conductivity is widely applied on supercapacitors (SC), but the energy storage mechanism for the pure electrical double layer capacitor of carbon leads to a low energy density. Developing stable aqueous electrolytes with abundant redox reactions via incorporating more than one redox additive in the electrolyte is one of the efficient strategies to improve the energy storage capacity of the AC-based SC. In this study, the dual redox additives of hydroquinone (HQ) and p-phenylenediamine (PPD) are incorporated in the aqueous solution as the electrolyte for SC. The effects of the aqueous solution type as well as the total redox additive concentration and the relative amounts of HQ and PPD on the electrochemical performance of SC are carefully studied. Two binders are used for assembling the AC electrodes, and the binder-dependent electrochemical behaviors and energy storage capabilities for SC are obtained. The symmetric SC assembled with the optimized electrolyte and the AC electrode prepared using the LA132 binder shows the potential window of 1.6 V, the specific capacitance of 116.23 F/g at 2 A/g, and the maximum energy density of 1.85 W h/kg at the power density of 0.15 kW/kg.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.