Abstract

Despite the importance of tobacco (Nicotiana tabacum) in agriculture and model organism investigations, the proteomic changes that occur in the tobacco leaf as it matures remain to be explored. In this study, an isobaric tags for relative and absolute quantification (iTRAQ) strategy was applied to investigate the proteomic profiles of K326 and Honghua Dajinyuan (HD) tobacco leaves at four growth stages. The proteomic profile varied with growth stage in both K326 and HD. Gene ontology (GO) classification was used to identify the biological processes that showed the greatest changes in protein expression between growth stages of HD and K326. Moreover, the number of differentially expressed proteins was greater in HD than in K326, especially during the rosette growth stage and the fast-growing stage. The galactose metabolism and glycosphingolipid biosynthesis-globo series pathways appeared only during the rosette growth stage of HD. It therefore appears that these pathways may be correlated with tobacco mosaic disease. The identification of these pathways should prove useful in investigations of the pathogenesis of tobacco mosaic virus. Graphical abstract ᅟ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call