Abstract

In this study, nonlinear behavior of steel shear walls (SSW) and composite steel shear wall reinforced with carbon fibers (CSSW) was investigated. Experimental and numerical studies were carried out to evaluate the effects of fiber content/angle and panel width on the properties of these walls. Results showed that wider panel widths enhance the behavior of both the SSW and CSSW. Higher fiber contents increase energy absorption, stiffness, over-strength and capacity, but decrease ductility values. It was concluded that fiber polymer has a more dominant effect on thin SSWs. The effect of fiber angle on the behavior of the CSSW was also studied and a few equations, relating fiber angle to properties, were suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.