Abstract

The presence of 14 organophosphate esters (OPEs) in surface sediments from a typical fishing port agglomeration in Dalian, North China was investigated for the first time. Tris(2-ethylhexyl) phosphate (TEHP), triphenylphosphine oxide (TPPO), and tris(2-chloroethyl) phosphate (TCEP) dominated 12 detectable OPEs (∑OPEs), with concentrations ranging widely from 0.56 to 352 ng/g (dry weight basis). The ∑OPE levels in sediments varied significantly across fishing harbors of various grades, and within the same grade, highlighting uneven distribution of OPE sources and inputs to harbors. The first- and second-class fishing harbors had higher geometric mean of ∑OPE contents compared to center and natural harbors, reflecting higher OPE pollution in these areas. Although there were significant correlations among the OPE congeners with high detection frequencies, the composition patterns of sediment OPEs varied considerably among fishing ports. The sediments in the center and first-class harbors had higher abundance of non-chlorinated OPEs (non-Cl-OPEs), suggesting heterogeneity in source strength and pollution characteristics of Cl- and non-Cl-OPEs in fishing ports. The distribution of OPEs in sediments was weakly associated with sediment organic carbon, but not socioeconomic variables, indicating complex controlling factors of their distributions in port sediments. The ecological risks of sediment OPEs were evaluated, and while OPE accumulations ranged broadly (7–684 ng/cm2), exposure hazards were negligible. The sediments in first- and second-class fishing harbors, which had greater OPE accumulation, were identified as reservoirs of OPEs in port aquatic environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.