Abstract

The publication in 1994 of Shor's algorithm, which allows factorization of composite number N in a time polynomial in its binary length L has been the primary catalyst for the race to construct a functional quantum computer. However, it seems clear that any practical system that may be developed will not be able to perform completely error free quantum gate operations or shield even idle qubits from inevitable error effects. Hence, the practicality of quantum algorithms needs to be investigated to estimate what demands must be made of quantum error correction (QEC). Several different quantum circuits implementing the quantum period finding (QPF) subroutine, which lies at the heart of Shor's algorithm have been designed, but each tacitly assumes that arbitrary pairs of qubits can be interacted. While some architectures posses this property, many promising proposals are best suited to realizing a single line of qubits with nearest neighbor interactions only. This paper will present a circuit suitable for implementing the QPF subroutine for such linear nearest neighbor (LNN) designs. We will then present direct simulation results showing for both the LNN circuit and for a circuit utilizing arbitrary interactions, that the QPF subroutine is very sensitive to a small number of errors in the entire circuit. These results can then be used to briefly examine some of the practical issues to implementing such large scale quantum algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call