Abstract

Unconventional methods of oil and natural gas extraction have been a growing part of North America's energy sector for the past 20-30years. Technologies such as horizontal hydraulic fracturing have facilitated the exploitation of geologic reserves that were previously resistant to standard drilling approaches. However, the environmental risks associated with hydraulic fracturing are relatively understudied. One such hazard is the wastewater by-product of hydraulic fracturing processes: flowback and produced water (FPW). During FPW production, transport, and storage, there are many potential pathways for environmental exposure. In the current review, toxicological hazards associated with FPW surface water contamination events and potential effects on freshwater biota are assessed. This review contains an extensive survey of chemicals commonly associated with FPW samples from shale formations across North America and median 50% lethal concentration values (LC50) of corresponding chemicals for many freshwater organisms. We identify the characteristics of FPW which may have the greatest potential to be drivers of toxicity to freshwater organisms. Notably, components associated with salinity, the organic fraction, and metal species are reviewed. Additionally, we examine the current state of FPW production in North America and identify the most significant obstacles impeding proper risk assessment development when environmental contamination events of this wastewater occur. Findings within this study will serve to catalyze further work on areas currently lacking in FPW research, including expanded whole effluent testing, repeated and chronic FPW exposure studies, and toxicity identification evaluations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call