Abstract

The use of mineral magnetic techniques as pollution proxy for road deposited sediment was explored using various statistical approaches. Standard techniques were adopted for measurement of mineral magnetic and geochemical parameters. The analyses of magnetic parameters revealed that the samples were dominated by ferrimagnetic minerals and multidomain grains. This implied that the magnetic fractions in the samples might be of anthropogenic origin. Results also indicate that the samples were dominated by low coercive, magnetically soft minerals. Thermomagnetic curves confirmed magnetite as the remanence bearing magnetic mineral having a Curie point temperature of ~580 °C. The strong association observed between magnetic susceptibility, susceptibility of anhysteric remanent magnetization and saturation isothermal remanent magnetization and aluminum, titanium, manganese, iron, chromium and lead demonstrated that these metals occurred as ferrimagnetic particles of technogenic origin resulting from vehicular sources. Assessment of pollution status of the road deposited sediment identified silicon and lead as the priority pollutants of concern. Generally, pollution load index was <1 (mean, 0.66 ± 0.14), indicating that the samples were not polluted in the overall, but the metals were in the buildup stage requiring constant monitoring. The sources of pollutants from principal component and cluster analyses identified the sources of pollution to be mainly from vehicular emissions such as brake linings, exhaust materials, tire wear, corroded metal parts, abrasion of lubricating oil and road construction materials. This study found that mineral magnetic techniques offer great potential as pollution proxy for soil pollution studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call