Abstract
The emergence of nanotechnology has opened new horizons for constructing efficient recognition interfaces. This is the first report where the potential of a multiwalled carbon nanotube based zinc nanocomposite (MWCNTs-Zn NPs) investigated for the detection of an agricultural pathogen i.e. Chili leaf curl betasatellite (ChLCB). Atomic force microscope analyses revealed the presence of multiwalled carbon nanotubes (MWCNTs) having a diameter of 50–100nm with zinc nanoparticles (Zn-NPs) of 25–500nm. In this system, these bunches of Zn-NPs anchored along the whole lengths of MWCNTs were used for the immobilization of probe DNA strands. The electrochemical performance of DNA biosensor was assessed in the absence and presence of the complementary DNA during cyclic and differential pulse voltammetry scans. Target binding events occurring on the interface surface patterned with single-stranded DNA was quantitatively translated into electrochemical signals due to hybridization process. In the presence of complementary target DNA, as the result of duplex formation, there was a decrease in the peak current from 1.89×10−04 to 5.84×10−05A. The specificity of this electrochemical DNA biosensor was found to be three times as compared to non-complementary DNA. This material structuring technique can be extended to design interfaces for the recognition of the other plant viruses and biomolecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.