Abstract

Wheat is one of the main staple cereal crops worldwide. However, drought-induced stress is one of the factors limiting wheat productivity, especially in arid and semi-arid regions. The present study aims to investigate the influence of arbuscular mycorrhizal fungi (AMF) on wheat plant growth under water-deficit conditions. Three Algerian durum wheat varieties—Mohamed Ben Bachir (MBB), Boussellem (BS) and Waha (W)—were grown with (+AMF) or without (−AMF) under water-deficit and non-stress conditions. Morphological, physiological, and biochemical responses to AMF inoculation under water deficit were quantified. The results showed improved morphological parameters (height of the aerial part (HAP), internode length (LIN), aerial part dry weight (APDW), root dry weight (RDW), length of the ear (LE)), and chlorophyll content in AMF-inoculated plants under water-deficit conditions compared to control plants (−AMF). Moreover, soluble protein content (SPC) and membrane stability index (MSI) significantly increased with AMF inoculation under water deficit by 18% and 10%, respectively, while the proline content decreased after AMF inoculation. In addition, the water deficit significantly increases peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT), but +AMF decreases them considerably in all studied varieties. The results suggest that AMF inoculation can lead to optimized durum wheat production under arid and semi-arid conditions and provide a basis for further studies on its effects under field conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call