Abstract
AbstractRecent increases in global temperatures have affected the phenology and survival of many species of plants and animals. We investigated a case study of the effects of potential climate change on a thermally sensitive species, the loggerhead sea turtle, at a breeding location at the northerly extent of the range of regular nesting in the United States. In addition to the physical limits imposed by temperature on this ectothermic species, sea turtle primary sex ratio is determined by the temperature experienced by eggs during the middle third of incubation. We recorded sand temperatures and used historical air temperatures (ATs) at Bald Head Island, NC, to examine past and predict future sex ratios under scenarios of warming. There were no significant temporal trends in primary sex ratio evident in recent years and estimated mean annual sex ratio was 58% female. Similarly, there were no temporal trends in phenology but earlier nesting and longer nesting seasons were correlated with warmer sea surface temperature. We modelled the effects of incremental increases in mean AT of up to 7.5°C, the maximum predicted increase under modelled scenarios, which would lead to 100% female hatchling production and lethally high incubation temperatures, causing reduction in hatchling production. Populations of turtles in more southern parts of the United States are currently highly female biased and are likely to become ultra‐biased with as little as 1°C of warming and experience extreme levels of mortality if warming exceeds 3°C. The lack of a demonstrable increase in AT in North Carolina in recent decades coupled with primary sex ratios that are not highly biased means that the male offspring from North Carolina could play an increasingly important role in the future viability of the loggerhead turtle in the Western Atlantic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.