Abstract

Marine shipping emissions have important impacts on air quality and climate. This type of anthropogenic emission remains largely unclear due to complex vessel types and activities. A coastal site near the Ningbo-Zhoushan port along the East China Sea was selected for this study, representing one of the hotspot regions globally with the most intensive shipping activities, in combination with vessels for both domestic and international transportation. Long-term temporal variations in key gaseous and particulate pollutants were obtained at the site using in-situ measurements, and the vessel speed associated with each classified vessel type was obtained according to the automatic identification system (AIS). In combination of backward trajectories, we were able to identify the periods predominated by the surrounding vessel emissions (in warm seasons, dominated by vessels in full operation or idle mode) or influenced by continental outflow (in cold season). We found that emissions of sulphur dioxide (SO2), nitrogen oxides (NOx), and black carbon (BC) aerosol were highly correlated with high-speed vessels, whereas carbon monoxide (CO) was likely related to lower operation speed. The total particulate matter (PM) was not directly linked to vessel activities. The enhancement factor in operation mode compared to that in idle mode was approximately 1-4 for most pollutants. This direct ambient observation of the emissions from a range of mixed vessel types may provide a basis for evaluating the shipping emission inventory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.