Abstract

Understanding how and when key novel adaptations evolved is a central goal of evolutionary biology. Within the immigrans-tripunctata radiation of Drosophila, many mushroom-feeding species are tolerant of host toxins, such as cyclopeptides, that are lethal to nearly all other eukaryotes. In this study, we used phylogenetic and functional approaches to investigate the evolution of cyclopeptide tolerance in the immigrans-tripunctata radiation of Drosophila. First, we inferred the evolutionary relationships among 48 species in this radiation using 978 single copy orthologs. Our results resolved previous incongruities within species groups across the phylogeny. Second, we expanded on previous studies of toxin tolerance by assaying 16 of these species for tolerance to α-amanitin and found that six of them could develop on diet with toxin. Finally, we asked how α-amanitin tolerance might have evolved across the immigrans-tripunctata radiation, and inferred that toxin tolerance was ancestral in mushroom-feeding Drosophila and subsequently lost multiple times. Our findings expand our understanding of toxin tolerance across the immigrans-tripunctata radiation and emphasize the uniqueness of toxin tolerance in this adaptive radiation and the complexity of biochemical adaptations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.