Abstract

Fricke gel dosimeters are especially useful in small-field dosimetry and validation of treatment delivery in three-dimensional space with features such as tissue equivalence, non-toxicity, high spatial resolution, non-dependence on energy, and dose rate. The use of basic Magnetic Resonance Imaging (MRI) protocols (T1- and T2-Weighted) for reading Fricke gel dosimeters has always been considered the dominant method in many studies. However, the development and application of advanced MRI techniques for more accurate readings of Fricke gel dosimeters can be useful. Considering that in the main structure of Fricke gel, there are conversions of iron ions to each other, this study aimed to investigate the performance of Susceptibility-Weighted Imaging (SWI) and Quantitative Susceptibility Mapping (QSM) based on magnetic susceptibility in the reading of Fricke gel dosimeters and to optimize the related imaging parameters. For this purpose, a Fricke-Xylenol orange-gelatin was made at five concentrations of iron ammonium sulfate. To obtain gel dosimeter calibration curves, vials containing gel were subjected to irradiation at three different doses by a linear accelerator. The reading of gel dosimeters was performed using MRI imaging in three protocols, T1W, T2W, and SWI, and analyzed with a method unique to each one. Finally, the results obtained from the three protocols were compared with each other. The comparison of calibration curves in three imaging protocols shows that the sensitivity of calibration curves in SWI was about three times its value in T2W, and on the other hand, the reported sensitivity in T1W was very small compared to the other two protocols. The linearity factor was similar between SWI and T1W protocols and higher in T2W. Therefore, it is concluded that in addition to the relaxometry techniques that have been used as a conventional method for reading Fricke gel dosimeter, SWI imaging has high sensitivity and specificity for reading dosimeter gel based on iron.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call