Abstract

Adaptive content delivery is the state of the art in real-time multimedia streaming. Leading streaming approaches, e.g., MPEG-DASH and Apple HTTP Live Streaming (HLS), have been developed for classical IP-based networks, providing effective streaming by means of pure client-based control and adaptation. However, the research activities of the Future Internet community adopt a new course that is different from today’s host-based communication model. So-called information-centric networks are of considerable interest and are advertised as enablers for intelligent networks, where effective content delivery is to be provided as an inherent network feature. This paper investigates the performance gap between pure client-driven adaptation and the theoretical optimum in the promising Future Internet architecture named data networking (NDN). The theoretical optimum is derived by modeling multimedia streaming in NDN as a fractional multi-commodity flow problem and by extending it taking caching into account. We investigate the multimedia streaming performance under different forwarding strategies, exposing the interplay of forwarding strategies and adaptation mechanisms. Furthermore, we examine the influence of network inherent caching on the streaming performance by varying the caching polices and the cache sizes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call