Abstract

Eigensolving (diagonalizing) small dense matrices threatens to become a bottleneck in the application of massively parallel computers to electronic structure methods. Because the computational cost of electronic structure methods typically scales asO(N3) or worse, even teraflop computer systems with thousands of processors will often confront problems withN 10,000. At present, diagonalizing anN×N matrix onP processors is not efficient whenP is large compared toN. The loss of efficiency can make diagonalization a bottleneck on a massively parallel computer, even though it is typically a minor operation on conventional serial machines. This situation motivates a search for both improved methods and identification of the computer characteristics that would be most productive to improve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.