Abstract

Polymer-based drug delivery systems are suitable to optimize the therapeutic properties of drugs and to render them safer, more effective and reliable. Long-term or repeated use of oral administration of fluconazole for treating chronic candidiasis in the patient and partially abandoned treatment lead to the resistant strains of the fungus Candida albicans and severity of the disease. In this study, the use of nanofibers and microfibers containing fluconazole for local drug delivery to increase the efficiencies and reduce the side effects caused by taking the drug was studied. Morphology, microstructure and chemical composition of PVA nanofibers containing fluconazole were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). As well as, the DSC test was indicated presence of fluconazole in PVA fibrous mats. The rate of drug release was investigated by UV-Vis spectrophotometery and swelling technique. SEM images showed that the nanofibers with uniform structure without beads were produced. The mechanical properties of the pristine PVA nanofiber and fibrous mat containing drug were evaluated. The release of fluconazole from PVA nanofibers in pH of 7.4 and at 37 °C was investigated. The results presented that the drug release rate is dependent on the morphology and structure of PVA nanofibers and could be adjusted in desired dosage. The presented products are applicable in the high production form for medical textile industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.