Abstract

The BLM helicase protein plays a vital role in DNA replication and the maintenance of genomic integrity. Variation in the BLM helicase gene resulted in defects in the DNA repair mechanism and was reported to be associated with Bloom syndrome (BS) and cancer. Despite extensive investigation of helicase proteins in humans, no attempt has previously been made to comprehensively analyse the single nucleotide polymorphism (SNPs) of the BLM gene. In this study, a comprehensive analysis of SNPs on the BLM gene was performed to identify, characterize and validate the pathogenic SNPs using computational approaches. We obtained SNP data from the dbSNP database version 150 and mapped these data to the genomic coordinates of the “NM_000057.3” transcript expressing BLM helicase (P54132). There were 607 SNPs mapped to missense, 29 SNPs mapped to nonsense, and 19 SNPs mapped to 3′-UTR regions. Initially, we used many consensus tools of SIFT, PROVEAN, Condel, and PolyPhen-2, which together increased the accuracy of prediction and identified 18 highly pathogenic non-synonymous SNPs (nsSNPs) out of 607 SNPs. Subsequently, these 18 high-confidence pathogenic nsSNPs were analysed for BLM protein stability, structure–function relationships and disease associations using various bioinformatics tools. These 18 mutants of the BLM protein along with the native protein were further investigated using molecular dynamics simulations to examine the structural consequences of the mutations, which might reveal their malfunction and contribution to disease. In addition, 28 SNPs were predicted as “stop gained” nonsense SNPs and one SNP was predicted as “start lost”. Two SNPs in the 3′UTR were found to abolish miRNA binding and thus may enhance the expression of BLM. Interestingly, we found that BLM mRNA overexpression is associated with different types of cancers. Further investigation showed that the dysregulation of BLM is associated with poor overall survival (OS) for lung and gastric cancer patients and hence led to the conclusion that BLM has the potential to be used as an important prognostic marker for the detection of lung and gastric cancer.

Highlights

  • The BLM helicase protein plays a vital role in DNA replication and the maintenance of genomic integrity

  • We report non-synonymous SNPs (nsSNPs) in BLM genes, which are most likely associated with pathogenic conditions involving BLM and other Bloom syndrome (BS)-associated diseases, such as cancers

  • Our findings suggest that the application of multiple powerful algorithms to single nucleotide polymorphism (SNPs) datasets identifies the most deleterious SNPs, which might be associated with diseases

Read more

Summary

Introduction

The BLM helicase protein plays a vital role in DNA replication and the maintenance of genomic integrity. Variation in the BLM helicase gene resulted in defects in the DNA repair mechanism and was reported to be associated with Bloom syndrome (BS) and cancer. Despite extensive investigation of helicase proteins in humans, no attempt has previously been made to comprehensively analyse the single nucleotide polymorphism (SNPs) of the BLM gene. The BLM gene encodes an important nuclear protein, BLM helicase, which is involved in DNA replication and the maintenance of genomic integrity. The absence of BLM protein activity causes a defect in DNA repair with a consequent increased rate of mutations and poses an elevated risk of ­cance[12,13,14,15]. Previous reports have shown the value of defining mutations as deleterious or non-deleterious and their connection with certain diseases, identifying pathogenic SNPs that are functionally compromised due to structure-damaging p­ roperties[21,22,23,24,25,26,27]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call