Abstract

Lithium-rich layered oxides (LRLOs) as Li-ion battery positive electrode materials promise to deliver superior specific capacity (> 270 mAh g−1) boosting the driving range of electric vehicles (EVs). Interestingly, these materials do not strictly require cobalt in their formulation, solving the supply, environmental, and ethical issues associated to this metal. Herein the synthesis of Co-free Li1.2Ni0.2Mn0.6O2 (LRNM) via lab-scale co-precipitation and solid-state reaction is reported, employing transition metal salts with different anions. These yield to different morphological features of the resulting LRNMs, also impacting the physicochemical characteristics and electrochemical performance. The use of sulfate TMs results in a material (LRNM-S) with smaller crystallite and particle sizes, which displays very high specific capacity (more than 270 mAh g−1 at C/20) and excellent rate capability (109 mAh g−1 at 10C). However, its capacity and voltage fading are also more pronounced than for the acetate-based material (LNRM-A), which owns twice as large crystallites achieving capacity and voltage retention both higher than 97% over 100 cycles. Our investigation unveiled the prevalent trade-off between full activation and exploitation of the LRLOs high specific capacity and anion redox against structural degradation and accelerated ageing of the materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.