Abstract

People with mobility disabilities (PWMD) often struggle with challenges in getting around independently for their daily activities. Mobility is one of the most important life habits which might be constrained by diverse environmental and social obstacles, limiting the social participation of PWMD. Upgrading the social integration of these people is a major challenge in Canada and internationally. Even though the advent of assistive navigation technologies improves the interaction of PWMD with their environments during their mobility, these tools mostly ignore the capabilities, capacities, and specific needs of this population. It is required to better understand PWMD’s navigational behavior in the environment to make these navigation tools adapted to their profile and specific needs. Hence, this research aims at using state-of-the-art technology (i.e., eye-tracking glasses) to explore the navigational behavior of PWMD. To do so, we designed and carried out an experiment in which a wheelchair user wearing eye-tracking glasses navigated a route following the instructions given by Google Maps. Several eye-tracking metrics for the collected eye movement data were computed and analyzed to explore the participant’s visual and mental activities while performing the navigation task. Artificial intelligence was used to automatically assign eye movement data to specific features in the environment during navigation. The preliminary findings of this research show that the highest level of fixation was assigned to the cell phone for receiving the route instructions, distracting thus the participant from his surroundings. In this sense, we have noticed that these route instructions were not sufficient and clear for wheelchair users in some situations. In addition, fixations on sidewalks and crosswalks were the second-highest amount because of the low accessibility level of several parts of the route. Some buildings as landmarks were also eye-catching for the wheelchair user during exploring the environment, and searching for the route, particularly when the route was accessible. In this way, it is required to help the wheelchair user to become aware of information on the accessibility of routes and salient environmental objects in advance to draw more attention to the environment, better orient in the environment, and make sure of following the correct route, therefore, upgrading wheelchair users’ spatial learning and being autonomous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.