Abstract

A recently proposed "5DCT" protocol uses deformable registration of free-breathing fast-helical CT scans to generate a breathing motion model. In order to allow accurate registration, free-breathing images are required to be free of doubling-artefacts, which arise when tissue motion is greater than scan speed. Using a unique set of digital phantoms based on patient data and verified with a motionphantom, this work identifies the minimum scanner parameters required to successfully generate free-breathing artefact-free fast-helical scans. A motion phantom and 5 patients were imaged 25 times under free-breathing conditions in alternating directions with a 64-slice CT scanner employing a low-dose fast-helical protocol. A series of high temporal resolution (0.1 s) 5DCT scan datasets was generated in each case. A simulated CT scanner was used to "image" each free-breathing data set. Various CT scanner detector widths and rotation times were simulated, and verified using the motion phantom results. Motion-induced artefacts were quantified in patient images using structural similarity maps to determine the similarity between axial slices. Increasing amounts of motion-induced artefacts were observed with increasing rotation times >0.2 s for 16mm detector configuration. The current generation of 16-slice CT scanners, which are present in the majority of Radiation Oncology departments, are not capable of generating free-breathing sortingartefact-free images required for 5DCT. Advances in knowledge: A recently proposed "5DCT" protocol uses deformable registration of free-breathing fast-helical CT scans to generate a breathing motion model. In order to allow accurate registration, free-breathing images are required to be free of doubling-artefacts, which arise when tissue motion is greater than scan speed. The results suggest that the current generation of 16-slice CT scanners, present in the majority of Radiation Oncology departments, are not capable of generating the free-breathing images required for 5DCT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call