Abstract

Cast iron is a very common and useful metal alloy, characterized by its high carbon content (>4%) in the allotropic state of graphite. The correct shape and distribution of graphite are essential for ensuring that the material has the right properties. The present investigation examines the metallurgical and mechanical characterization of a spheroidal (nodular) cast iron, an alloy that derives its name and its excellent properties from the presence of graphite as spheroidal nodules. Experimental data are detected and considered from a data mining perspective, with the scope to extract new and little-known information. Specifically, a machine learning toolkit (i.e., Orange Data Mining) is used as a means of permitting supervised learners/classifiers (such as neural networks, k-nearest neighbors, and many others) to understand related metallurgical and mechanical features. An accuracy rate of over 90% can be considered as representative of the method. Finally, interesting considerations emerged regarding the dimensional effect on the variation in the solidification rates, microstructure, and properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.