Abstract

BackgroundTo investigate the loco-regional progression-free survival (LPFS) of intensity-modulated radiotherapy (IMRT) with different fraction sizes for locally advanced non-small-cell lung cancer (LANSCLC), and to apply a new radiobiological model for tumor control probability (TCP).MethodsOne hundred and three LANSCLC patients treated with concurrent radiochemotherapy were retrospectively analyzed. Factors potentially predictive of LPFS were assessed in the univariate and multivariate analysis. Patients were divided into group A (2.0 ≤ fraction size<2.2Gy), B (2.2 ≤ fraction size<2.5Gy), and C (2.5 ≤ fraction size≤3.1Gy) according to the tertiles of fraction size. A novel LQRG/TCP model, incorporating four “R”s of radiobiology and Gompertzian tumor growth, was developed to predict LPFS and compared with the classical LQ/TCP model.ResultsWith a median follow-up of 22.1 months, the median LPFS was 23.8 months. Fraction size was independently prognostic of LPFS. The median LPFS of group A, B and C was 13.8, 35.7 months and not reached, respectively. Using the new LQRG/TCP model, the average absolute and relative fitting errors for LPFS were 6.9 and 19.6% for group A, 5.5 and 8.8% for group B, 6.6 and 9.5% for group C, compared with 9.5 and 29.4% for group A, 16.6 and 36.7% for group B, 24.8 and 39.1% for group C using the conventional LQ/TCP model.ConclusionsHypo-fractionated IMRT could be an effective approach for dose intensification in LANSCLC. Compared with conventional LQ model, the LQRG model showed a better performance in predicting follow-up time dependent LPFS.

Highlights

  • To investigate the loco-regional progression-free survival (LPFS) of intensity-modulated radiotherapy (IMRT) with different fraction sizes for locally advanced non-small-cell lung cancer (LANSCLC), and to apply a new radiobiological model for tumor control probability (TCP)

  • Hypo-fractionated IMRT could be an effective approach for dose intensification in LANSCLC

  • Compared with conventional LQ model, the Linear-quadratic model incorporating cell repair (LQRG) model showed a better performance in predicting follow-up time dependent LPFS

Read more

Summary

Introduction

To investigate the loco-regional progression-free survival (LPFS) of intensity-modulated radiotherapy (IMRT) with different fraction sizes for locally advanced non-small-cell lung cancer (LANSCLC), and to apply a new radiobiological model for tumor control probability (TCP). Concurrent chemoradiotherapy (CCRT) has long been established as the standard therapy for unresectable locally advanced non-small-cell lung cancer (LANSCLC), while the loco-regional control (LRC) and overall survival (OS) were suboptimal. After the impact of radiation dose for NSCLC was established [2], efforts to improve the LRC have been focused on increasing the total irradiation dose. Hypo-fractionation radiotherapy enables the delivery of an increased biologically effective dose (BED) without extending the overall treatment time (OTT). Image guided radiotherapy (IGRT) and intensity-modulated radiation therapy (IMRT) conform the radiation dose to the tumor and spare adjacent critical organs [4]. There are limited data on hypo-fractionated SIB-IMRT concurrent with chemotherapy in LANSCLC, and the feasibility and efficacy needs to be investigated

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.