Abstract
Plasmon surface polaritons, resonantly excited in the Kretschmann format, are used to enhance the fluorescence emission of chromophore-labeled oligonucleotides (15mers) binding to surface-attached (via biotin–streptavidin linkages) complement catcher probes. A detailed analysis of the association and dissociation kinetics as well as the affinity constants is given for a mismatch 1 hybrid, emphasizing, in particular, the experimental conditions that are required to allow for an artifact-free determination of rate constants. A first comparison between DNA- and peptide nucleic acid (PNA-) probes shows similar affinities, however, significant deviations from single-exponential kinetics predicted by a simple Langmuir model for the PNA case are found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.