Abstract

In this work, we investigate the structural evolution and reaction kinetics of LixNi0.8Co0.15Al0.05O2 (NCA) cathode materials induced by the initial charge/discharge as a function of the state of charge (SOC 50 and 90%) and C-rates (0.1–10C), with a combination of high-resolution transmission electron microscopy (HRTEM) imaging, selected area electron diffraction (SAED), and electron energy loss spectroscopy (EELS). During initial charging, the effects of C-rates on the structural modifications of NCA cathode materials are strongly dependent on how much the lithium is extracted from the pristine NCA. The structural modifications become more substantial as the extent of the charge increases, particularly at higher C-rates. In the highly delithiated state (90% SOC), even the particles charged at the same C-rate show significant variations in the degree of the structural modifications. The changes in the crystallographic and electronic structures at the subsurface scales, which were induced by the initial ch...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.