Abstract

Ectopic calcification of myofibers is an early pathogenic feature in patients and animal models of Duchenne muscular dystrophy (DMD). In previous studies using the Dmdmdx-βgeo mouse model, we found that the dystrophin-null phenotype exacerbates this abnormality and that mineralised myofibers are surrounded by macrophages. Furthermore, the P2X7 purinoceptor, functioning in immune cells offers protection against dystrophic calcification. In the present study, by exploring transcriptomic data from Dmdmdx mice, we hypothesised these effects to be mediated by C-X-C motif chemokine 5 (CXCL5) downstream of P2X7 activation. We found that CXCL5 is upregulated in the quadriceps muscles of Dmdmdx-βgeo mice compared to wild-type controls. In contrast, at the cell level, dystrophic (SC5) skeletal muscle cells secreted less CXCL5 chemokine than wild-type (IMO) controls. Although release from IMO cells was increased by P2X7 activation, this could not explain the elevated CXCL5 levels observed in dystrophic muscle tissue. Instead, we found that CXCL5 is released by dystrophin-null macrophages in response to P2X7 activation, suggesting that macrophages are the source of CXCL5 in dystrophic muscles. The effects of CXCL5 upon mineralisation were investigated using the Alizarin Red assay to quantify calcium deposition in vitro. In basal (low phosphate) media, CXCL5 increased calcification in IMO but not SC5 myoblasts. However, in cultures treated in high phosphate media, to mimic dysregulated phosphate metabolism occurring in DMD, CXCL5 decreased calcification in both IMO and SC5 cells. These data indicate that CXCL5 is part of a homoeostatic mechanism regulating intracellular calcium, that CXCL5 can be released by macrophages in response to the extracellular ATP damage-associated signal, and that CXCL5 can be part of a damage response to protect against ectopic calcification. This mechanism is affected by DMD gene mutations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.