Abstract
Renewable and degradable polymers have emerged in everyday applications ranging from mundane eating utensils to high-tech medical devices. However, the current literature lacks a thorough experimental characterization of the mechanical behavior change due to degradation. In this work, we characterize the microscopic chemical changes due to photo-degradation and resulting stress effects on the mechanical behavior of cellulose acetate, a renewable and degradable polymer that is used in various consumer products. Specifically, we photo-degrade this polymer under (i) traction-free conditions and (ii) under applied stress. A key finding of this work is that upon photo-degradation, this material undergoes chain scission, which affects its mechanical properties and may be further affected by the applied stress.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.