Abstract

This study prepared starch with different degrees of gelatinization (10 % and 30 %) by CaCl2, and further combined with citric acid at different concentrations (10 %, 20 %, and 30 %) for esterification. The results indicated that CaCl2 induced surface gelatinization and the esterification promoted its fragmentation. This synergistic modification induced depolymerization of starch chains and a decrease in molecular weight, although starch's Maltese cross, growth rings, and crystal type remained unchanged. Moreover, the synergistic modification induces a short-range ordered structure loss and the enthalpy decrease of starch, which induce starch pasting properties decrease and solubility increase. Furthermore, the introduction of ester groups by esterification increases the resistant starch content by limiting the binding sites for digestive enzymes. In conclusion, surface gelatinization can increase active reaction sites by disrupting the starch shell structure, and serves as a potential pretreatment to enhance the deep application of esterified starch in food and pharmaceutical fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.