Abstract

Recently, the bulk heterojunction (BHJ)-based photoactive layer has been favored over the planar heterojunction (PHJ)-based photoactive layer for organic photovoltaics (OPVs), owing to the evitable thickness limit of the latter induced by the low mobility of charge carriers. However, under dim indoor light conditions, the PV performance becomes immune to the resistive components of the PHJ OPVs, such as a thick photoactive layer, thereby rendering them attractive for operating indoors. In this study, we devise and demonstrate indoor OPVs with a PHJ-based photoactive layer constituting poly(3-hexylthiophene-2,5-diyl) (P3HT) and indene-C60 bisadduct (ICBA). The performance of the PHJ OPVs was optimized by modulating the thickness of the ICBA layer under a 1000 lx light-emitting diode lamp. OPVs with a 65 nm-thick ICBA layer exhibited excellent indoor performance with a power conversion efficiency of 15.3 ± 0.3%, comparable to that of the reference BHJ OPVs (15.0 ± 0.2%). No noticeable performance degradation was observed by increasing the thickness of the PHJ-based photoactive layer; instead, a thick photoactive layer only enhanced the light absorption, resulting in excellent indoor performance with a higher photocurrent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call