Abstract

Positron emission tomography (PET) is a powerful tool for investigating the in vivo behavior of drug delivery systems. We aimed to assess the biodistribution of extracellular vesicles (EVs), nanosized vesicles secreted by cells isolated from various human cell sources using PET. EVs were isolated from mesenchymal stromal cells (MSCs) (MSC EVs), human macrophages (Mϕ EVs), and a melanoma cell line (A375 EVs) by centrifugation and were conjugated with deferoxamine for radiolabeling with Zr-89. PET using conjugated and radiolabeled EVs evaluated their in vivo biodistribution and tissue tropisms. Our study also investigated differences in mouse models, utilizing immunocompetent and immunocompromised mice and an A375 xenograft tumor model. Lastly, we investigated the impact of different labeling techniques on the observed EV biodistribution, including covalent surface modification and membrane incorporation. PET showed that all tested EVs exhibited extended in vivo circulation and generally low uptake in the liver, spleen, and lungs. However, Mϕ EVs showed high liver uptake, potentially attributable to the intrinsic tissue tropism of these EVs from the surface protein composition. MSC EV biodistribution differed between immunocompetent and immunodeficient mice, with increased spleen uptake observed in the latter. PET using A375 xenografts demonstrated efficient tumor uptake of EVs, but no preferential tissue-specific tropism of A375 EVs was found. Biodistribution differences between labeling techniques showed that surface-conjugated EVs had preferential blood circulation and low liver, spleen, and lung uptake compared to membrane integration. This study demonstrates the potential of EVs as effective drug carriers for various diseases, highlights the importance of selecting appropriate cell sources for EV-based drug delivery, and suggests that EV tropism can be harnessed to optimize therapeutic efficacy. Our findings indicate that the cellular source of EVs, labeling technique, and animal model can influence the observed biodistribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.