Abstract

Despite the recent success of state-of-the-art 3D object recognition approaches, service robots still frequently fail to recognize many objects in real human-centric environments. For these robots, object recognition is a challenging task due to the high demand for accurate and real-time response under changing and unpredictable environmental conditions. Most of the recent approaches use either the shape information only and ignore the role of color information or vice versa. Furthermore, they mainly utilize the L_n Minkowski family functions to measure the similarity of two object views, while there are various distance measures that are applicable to compare two object views. In this paper, we explore the importance of shape information, color constancy, color spaces, and various similarity measures in open-ended 3D object recognition. Toward this goal, we extensively evaluate the performance of object recognition approaches in three different configurations, including color-only, shape-only, and combinations of color and shape, in both offline and online settings. Experimental results concerning scalability, memory usage, and object recognition performance show that all of the combinations of color and shape yield significant improvements over the shape-only and color-only approaches. The underlying reason is that color information is an important feature to distinguish objects that have very similar geometric properties with different colors and vice versa. Moreover, by combining color and shape information, we demonstrate that the robot can learn new object categories from very few training examples in a real-world setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.